
Appendix 1. Details of model implementation.  

We used hierarchical generalized linear models to specify the likelihood for the dynamic 

occupancy model that accounts for detection probability and misclassification. We modeled survey data 

(𝑌𝑖,𝑗,𝑡) of Florida Grasshopper Sparrow observations at point count sites (𝑖) during visit (𝑗) and for year  

𝑡 in {1, 2, 3, … 𝑇} as 𝑌𝑖,𝑗,𝑡~𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜋𝑖,𝑗,𝑡,1:𝐾) where π is the probability of a specific state occurring 

and survey data consisted of observed states k in {1,2,3} where K=3.  The model estimated a discrete and 

latent occupancy state (𝑧); detection probability (𝑝11) that accounted for false negatives when a bird was 

present but undetected; misclassification probability (𝑝10) that accounts for false positives when a bird 

was absent but detected; and the probability of certainty of detections (𝑏). Our data had three observed 

states when a site was visited including no detections (k=1), certain detections (k=2), and uncertain 

detections (k=3). These three detection states enabled the model to distinguish between sites that were: 

truly occupied; misclassified as occupied sites; occupied but birds were not detected; and truly 

unoccupied. 

The first observed state, no detection (Y=1) was the outcome when a site was either occupied by 

the focal species and no individuals were detected, or a site was unoccupied and without 

misclassification. We describe this as 𝜋𝑖,𝑗,𝑡,𝑘=1 = 𝑧𝑖,𝑡(1 − 𝑝11𝑖,𝑗,𝑡) + (1 − 𝑧𝑖,𝑡  )(1 − 𝑝10𝑖,𝑗,𝑡). 

The second observed state included uncertain detections (Y=2) and was the outcome when a site 

was occupied and surveyors had an uncertain detection (i.e., there was ambiguity which subspecies was 

detected), or the site was unoccupied by the focal species but was misclassified as being occupied. We 

express this as 𝜋𝑖,𝑗,𝑡,𝑘=2 = 𝑧𝑖,𝑡(1 − 𝑏𝑖,𝑗,𝑡)𝑝11𝑖,𝑗,𝑡 + (1 − 𝑧𝑖,𝑡 )𝑝10𝑖,𝑗,𝑡. 

The third observed state designated certain detections (Y=3) and was the outcome when a site 

was occupied by the focal species and a surveyor detected an individual with certainty. We express this as 

𝜋𝑖,𝑗,𝑡,𝑘=3 = 𝑧𝑖,𝑡𝑏𝑖,𝑗,𝑡𝑝11𝑖,𝑗,𝑡. We considered certain detections to include banded FGSP that were resighted 

and Grasshopper Sparrows detected after 1 May when >99% of Eastern Grasshopper Sparrow (migratory 



pratensis) detections had ceased from Florida counties where Florida Grasshopper Sparrow are not 

known to persist.  

For the first year, initial probability of occupancy 𝑧𝑖,1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓𝑖,1) with a mean (𝜓). We 

included occupancy dynamics as a Markovian autoregressive structure where occupancy at future time 

steps (𝑧𝑖,𝑡+1) was a function of occupancy during previous time steps (𝑧𝑖,𝑡), site persistence (𝜙) and 

colonization (𝛾) as 𝑧𝑖,𝑡+1|𝑧𝑖,𝑡  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑧𝑖,𝑡𝜙𝑖,𝑡 + (1 − 𝑧𝑖,𝑡)𝛾𝑖,𝑡). 

We added complexity using covariates and link functions to customize the model for Florida 

Grasshopper Sparrow. We present the global model that includes all covariates for each response variable. 

Model-estimated parameters that represent intercepts and coefficients are indicated using the symbols β, 

δ, α, ρ, and ω. Detection probability included the covariates ordinal date of point count (DATE) and hours 

after civil twilight when a point count was conducted (HOUR, see Table 1 for full descriptions) and we 

centered and scaled these covariates, and included a random intercept for year (𝜀𝑝11). 

𝑙𝑜𝑔𝑖𝑡(𝑝11𝑖,𝑗,𝑡)~ 𝛽0 + 𝛽1𝐷𝐴𝑇𝐸𝑖,𝑗,𝑡 + 𝛽2𝐷𝐴𝑇𝐸𝑖,𝑗,𝑡
2 + 𝛽3𝐻𝑂𝑈𝑅𝑖,𝑗,𝑡 + 𝛽4𝐻𝑂𝑈𝑅𝑖,𝑗,𝑡

2 +𝜀𝑝11,𝑡    

𝜀𝑝11,𝑡 ~𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑝11) 

Probability of misclassification varied as a function of DATE and included a random intercept for year. 

𝑙𝑜𝑔𝑖𝑡(𝑝10𝑖,𝑗,𝑡) ~ 𝛿0 + 𝛿1𝐷𝐴𝑇𝐸𝑖,𝑗,𝑡 + 𝛿2𝐷𝐴𝑇𝐸𝑖,𝑗,𝑡
2 +𝜀𝑝10,𝑡 

𝜀𝑝10,𝑡 ~𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑝10) 

We allowed certainty to vary with DATE because eBird data indicated that most Eastern Grasshopper 

Sparrows (>99%) detections had occurred before 1 May. 

𝑙𝑜𝑔𝑖𝑡(𝑏𝑖,𝑗,𝑡) = 𝛼0 + 𝛼1𝐷𝐴𝑇𝐸𝑖,𝑗,𝑡 + 𝛼2𝐷𝐴𝑇𝐸𝑖,𝑗,𝑡
2 + 𝛼3𝐷𝐴𝑇𝐸𝑖,𝑗,𝑡
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We specified initial occupancy state as 𝑙𝑜𝑔𝑖𝑡(𝜓𝑖,𝑡=1) =  𝜇𝜓,𝑡=1. We included years-since-fire (YSF) and 

seasonality of the most recent fire (SEAS) and their interactions as covariates for dynamics (i.e., 

persistence and colonization). 

𝑙𝑜𝑔𝑖𝑡(𝜙𝑖,𝑡) = 𝜌0 + 𝜌1𝑌𝑆𝐹𝑖,𝑡 + 

𝜌2 sin(𝑆𝐸𝐴𝑆𝑖,𝑡) + 𝜌3cos(𝑆𝐸𝐴𝑆𝑖,𝑡) + 

𝜌4𝑌𝑆𝐹𝑖,𝑡 sin(𝑆𝐸𝐴𝑆𝑖,𝑡) + 𝜌5𝑌𝑆𝐹𝑖,𝑡cos(𝑆𝐸𝐴𝑆𝑖,𝑡) + 

𝜌6𝑌𝑆𝐹𝑖,𝑡
2 sin(𝑆𝐸𝐴𝑆𝑖,𝑡) + 𝜌7𝑌𝑆𝐹𝑖,𝑡

2 cos(𝑆𝐸𝐴𝑆𝑖,𝑡) + 𝜀𝜙,𝑡 

𝜀𝜙,𝑡~𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜙) 

𝑙𝑜𝑔𝑖𝑡(𝛾𝑖,𝑡) =  𝜔0 + 𝜔1𝑌𝑆𝐹𝑖,𝑡 +  𝜔2𝑌𝑆𝐹𝑖,𝑡
2 + 

𝜔3 sin(𝑆𝐸𝐴𝑆𝑖,𝑡) + 𝜔4cos(𝑆𝐸𝐴𝑆𝑖,𝑡) + 

𝜔5𝑌𝑆𝐹𝑖,𝑡 sin(𝑆𝐸𝐴𝑆𝑖,𝑡) + 𝜔6𝑌𝑆𝐹𝑖,𝑡cos(𝑆𝐸𝐴𝑆𝑖,𝑡) + 

𝜔7𝑌𝑆𝐹𝑖,𝑡 𝑌𝑆𝐹𝑖,𝑡
2 sin(𝑆𝐸𝐴𝑆𝑖,𝑡) + 𝜔8𝑌𝑆𝐹𝑖,𝑡𝑌𝑆𝐹𝑖,𝑡

2 cos(𝑆𝐸𝐴𝑆𝑖,𝑡) + 𝜀𝛾,𝑡 

𝜀𝛾,𝑡~𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛾) 

Seasonality covariates for persistence and colonization allowed a wave-like response over the duration of 

a year. This response could have a peak and a trough that were determined by model-estimated 

parameters. As an example of an effect from seasonality, ordinal date of the most recent fire could 

influence persistence, and this response would have a peak during times of year when persistence was 

greatest, and a trough when persistence was least. However, the mean response could become a flat line 

when these coefficients equal zero indicating no seasonality. We included interaction terms as covariates 

of both persistence and colonization between YSF and SEAS, YSF2 and SEAS, and included random 

effects for year (𝜀𝜙, 𝜀𝛾).  


